Package: svyROC 1.0.0

svyROC: Estimation of the ROC Curve and the AUC for Complex Survey Data

Estimate the receiver operating characteristic (ROC) curve, area under the curve (AUC) and optimal cut-off points for individual classification taking into account complex sampling designs when working with complex survey data. Methods implemented in this package are described in: A. Iparragirre, I. Barrio, I. Arostegui (2024) <doi:10.1002/sta4.635>; A. Iparragirre, I. Barrio, J. Aramendi, I. Arostegui (2022) <doi:10.2436/20.8080.02.121>; A. Iparragirre, I. Barrio (2024) <doi:10.1007/978-3-031-65723-8_7>.

Authors:Amaia Iparragirre [aut, cre, cph], Irantzu Barrio [aut], Inmaculada Arostegui [aut]

svyROC_1.0.0.tar.gz
svyROC_1.0.0.zip(r-4.5)svyROC_1.0.0.zip(r-4.4)svyROC_1.0.0.zip(r-4.3)
svyROC_1.0.0.tgz(r-4.4-any)svyROC_1.0.0.tgz(r-4.3-any)
svyROC_1.0.0.tar.gz(r-4.5-noble)svyROC_1.0.0.tar.gz(r-4.4-noble)
svyROC_1.0.0.tgz(r-4.4-emscripten)svyROC_1.0.0.tgz(r-4.3-emscripten)
svyROC.pdf |svyROC.html
svyROC/json (API)
NEWS

# Install 'svyROC' in R:
install.packages('svyROC', repos = c('https://aiparragirre.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/aiparragirre/svyroc/issues

Datasets:

On CRAN:

aucauc-optimism-correctioncomplex-survey-dataoptimal-cut-off-pointsroc-curvesampling-weights

2.70 score 203 downloads 7 exports 17 dependencies

Last updated 17 days agofrom:357565b744. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-winOKNov 07 2024
R-4.5-linuxOKNov 07 2024
R-4.4-winOKNov 07 2024
R-4.4-macOKNov 07 2024
R-4.3-winOKNov 07 2024
R-4.3-macOKNov 07 2024

Exports:corrected.waucwaucwocpwrocwroc.plotwsewsp

Dependencies:codetoolsDBIforeachglmnetiteratorslatticeMatrixminqamitoolsnumDerivRcppRcppArmadilloRcppEigenshapesurveysurvivalsvyVarSel